0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Parkinson’s Disease Classification Using EEG and a Hybrid EEGNet–LSTM Architecture
نویسندگان :
Pouya Taghipour Langrodi
1
Amirsadra Khodadadi
2
Ali Sadat Modaresi
3
Mohammad Ahadzadeh
4
Mostafa Rostami
5
Sadegh Madadi
6
1- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
2- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
3- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
4- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
5- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
6- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
کلمات کلیدی :
Parkinson’s Disease،Electroencephalography،Machine Learning،Simon Conflict،Deep Neural Networks
چکیده :
Parkinson's disease (PD) is a common progressive neurodegenerative disorder that causes motor problems and cognitive-control problems that slowly get worse over time. These problems often show up years before a clinical diagnosis. To meet the need for objective early biomarkers, high-density electroencephalography (EEG) was recorded from 56 subjects (28 PD patients and 28 controls) while they did the Simon Conflict Task 200 times. This task tests how well people can stop themselves from responding when the conditions are the same or different. After a few preprocessing steps, which included 0.1–40 Hz band-pass filtering, common-average re-referencing, and independent component analysis (ICA) with ICLabel-guided artifact rejection, one-second epochs that were time-locked to the start of the stimulus were taken out. We then created a hybrid deep-learning framework that combined EEGNet for spatial feature extraction across 64 channels with three stacked bidirectional Long Short-Term Memory (LSTM) layers to capture temporal dynamics. Three shallow supervised models were used to classify the 64-dimensional spatiotemporal representations for each epoch: support vector machine (SVM), k-nearest neighbors (kNN), and an ensemble of SVM and Naïve Bayes. SVM did the best, with 89.7% accuracy, 91.8% sensitivity, and 85.0% specificity. This was a 5–10% improvement over traditional handcrafted-feature classifiers (p < 0.01). These results show that end-to-end spatial-temporal feature learning from task-evoked EEG is a powerful, non-invasive way to accurately separate Parkinson’s patients and the control group.
لیست مقالات
لیست مقالات بایگانی شده
Classification of Excitatory and Inhibitory Neurons in Animal Data Using Machine Learning and CNN Models
Mahdi Mollaei - Amirhossein Mashghdoust - Ali Khadem
Stem cell engineering in tissue repair: A Review of Therapeutic Perspectives
Farnaz Mozayani - Mohammadbagher Kargar
تحلیل رنگ بافت عضلانی و چربی گاو با روشهای مبتنی بر بینایی ماشین: یک بررسی جامع
فاطمه بناءهمزایی - مصطفی حشمتی
Robust Binary Differentiation of ALL vs. AML Using Deep Graph Convolutions
Mahsan Rahmani - Saeed Meshgini - Reza Afrouzian
طراحی چارچوب شخصیسازیشده درمان بیماری MS مبتنی بر یادگیری تقویتی عمیق SAC
مریم سبزه یان - محبوبه سبزه یان - امین نوری - ماندانا سادات غفوریان
مدل ترکیبی مبتنی بر DenseNet، الگوریتم ژنتیک و GAN برای تشخیص آلزایمر از تصاویر MRI
محمد قنبری صباغ - محسن کرمی طلایی
کاربرد هوش مصنوعی در مدیریت پروژه در زمینههای زنجیره تأمین
فرشاد زارعی
آینده پژوهی فرصتها و چالشهای احتمالی در صنعت بیمه ایران
حسین خانلو
In-silico Molecular Investigation of Caloubater crescentus Bioadhesive Proteins
Yeganeh Kayalha - Maryam Azimzadeh Irani
پیش بینی بار الکتریکی کوتاه مدت در شبکه شرکت برق منطقه ای آذربایجان با استفاده از سیستم فازی
محمدرضا رستمی نوشهر - لاریسا خدادادی - حسین خون جهان - عبدالحسین شاکری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2