0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
An Automatic Pipeline for Simultaneous EEG-fMRI Artifact-removal (SEFA)
نویسندگان :
Farid Hosseinzadeh
1
Amin Mohammad Mohammadi
2
Mehrdad Anvarifard
3
ُSasan Keshavarz
4
Elias Ebrahimzadeh
5
Hamid Soltanian-Zadeh
6
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
5- دانشگاه تهران
6- دانشگاه تهران
کلمات کلیدی :
Simultaneous EEG-fMRI،EEG،preprocessing،artifact removal،automation،pipeline،ٍَُّSEFA
چکیده :
Simultaneous EEG–fMRI provides complementary temporal and spatial information about brain function, but its utility is hindered by severe scanner-induced artifacts such as gradient and ballistocardiographic (BCG) noise. Manual artifact correction is effective but labor-intensive, inconsistent, and difficult to scale. We introduce SEFA, a fully automated two-stage preprocessing pipeline for simultaneous EEG–fMRI that integrates MRI-specific artifact correction (average artifact subtraction, optimal basis set, and PCA/OBS modeling) with state-of-the-art EEG cleaning techniques adapted from a previous popular standard EEG preprocessing pipeline, HAPPE, including automated independent component classification (MARA and ICLabel), bad-channel detection, multitaper regression for line noise, and segment-level quality control. Validation against manually corrected datasets from a reward-based decision-making task demonstrated that SEFA achieves near-perfect equivalence with expert preprocessing. Event-related potentials (ERPs) from both approaches exhibited indistinguishable morphology, latency, and amplitude, with mean channel-wise correlations of r = 0.91 ± 0.14, and 72% of electrodes exceeding r > 0.90. Signal-to-noise ratio (SNR) improved from ~0.8 dB in raw data to 6.7 dB with SEFA, matching manual performance (6.9 dB). Statistical testing confirmed no significant differences in ERP amplitude or latency between automated and manual methods (all p > 0.1). By reducing operator bias and cutting processing time from hours to minutes, SEFA enables reproducible, scalable, and clinically feasible preprocessing of simultaneous EEG–fMRI data.
لیست مقالات
لیست مقالات بایگانی شده
تاثیر ویژگیهای حسابرس مستقل بر ارزش افزوده اقتصادی با تاکید بر اثربخشی هیئت مدیره در صنعت فولاد
فرناز علی بالازاده یامچلو - رامین علی بالازاده یامچلو
بررسی علمی کاربردهای هوش مصنوعیAI در بهینهسازی عملکرد و ایمنی درصنعت نیروگاه هستهای چالشها و راهکارهای بومی مورد مطالعه نیروگاه هسته ای بوشهر
حسین بوذری
مروری بر ابزارهای نوین تأمین مالی اسلامی
مهدی زینالی
Personalized EEG Source Estimation in a Shape Drawing Task
Zakieh Hassanzadeh - Melisa Daryayi - Navid Entezari - Fariba Bahrami
کاربردهای کلانداده در حسابداری: شناسایی تقلبهای مالی و ارتقاء شفافیت مالی
الناز شاکری فر
مدلسازی عددی اندرکنش آکوستیک - سیال برای بهبود کیفیت اختلاط در میکروکانال سامانههای زیستی
رسول عدلی بیله سوار - فرهاد صادق مغانلو - محمد وجدی حکم آباد
Investigation of the presence of movement intention during sequential hand movements using neurophysiological analyses of EEG signals
Elnaz Eilbeigi
Optimization of AODV Routing Protocol in Ad Hoc Networks Using Particle Swarm Optimization Algorithm
Jalileh Alboshokeh - Touraj Mohammadpour
تقویت عضلات چهار سر ران و اصلاح الگوهای حرکتی با استفاده از بیوفیدبک الکترومایوگرافی در بیماران مبتلا به مالتیپل اسکلروزیس (MS)
مهدی میری - احسان تهامی - گلاره ویسی
BiLSTM-Transformer: A Novel Hybrid Model for Accurate Prediction of Hand Joint Angles from sEMG Signals
Anita Sadat Sadati Rostami - Alireza Nazari - Mohammadreza Nayeri
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2