0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
HEALTH: Hyperbolic Embedding and Acoustic-based Learning for Topological Hierarchies in Parkinson’s Disease
Authors :
Saghar Shafaati
1
S. Hossein Erfani
2
1- Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
2- Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
Keywords :
Parkinson’s disease،Hyperbolic embedding،Acoustic biomarkers،Explainable AI،Disease progression modeling
Abstract :
Parkinson's disease (PD) is a neurodegenerative disorder characterized by heterogeneous motor and non-motor features complicating early diagnosis and individualized monitoring. Recent reports have identified acoustic biomarkers to be non-invasive prodromal PD predictors, but classical modeling approaches often fail to capture the complex, hierarchical nature of disease progression. This study introduces HEALTH (Hyperbolic Embedding and Acoustic-based Learning for Topological Hierarchies), a novel computational framework that integrates graph-based similarity modeling, hyperbolic geometry, unsupervised clustering, and explainable supervised classification to characterize dysarthric speech patterns in PD. Sustained phonation recordings from participants were preprocessed and embedded in a two-dimensional Poincaré disk, wherein hyperbolic distances reflected latent acoustic dissimilarities. The embedding optimization achieved a ~95% reduction in reconstruction loss, with silhouette coefficients stabilizing near 0.44, indicating robust cluster separation. SHAP analysis identified pitch entropy, amplitude variability, and frequency-related measures as principal determinants of classification outcomes, supporting the clinical interpretability of the model. Comparative evaluation demonstrated that HEALTH outperforms traditional Euclidean approaches in both stratification and explainability. This work underscores the potential of hyperbolic embeddings as scalable, interpretable tools for precision monitoring of neurodegenerative disease and contributes a reproducible methodology to advance non-invasive, data-driven diagnostics in PD.
Papers List
List of archived papers
Development of Folic Acid-Conjugated Iron Oxide Nanoparticles Loaded with Doxorubicin via Arc Discharge: A Novel Approach for Synergistic Photothermal-Chemotherapy of Cancer Using Bacterial Cellulose-Polyvinyl Alcohol Hydrogel
Saeid Orangi - Soodabeh Davaran
طبقه بندی دقیق تومورهای مغزی با رویکرد ترکیبی EfficientNetB4 و ترنسفورمر بینایی
الهه الهی پرست باقری - افشین ابراهیمی
Document Clustering Using Deep Pre-trained Language Model Embeddings for Information Retrieval
Mahdi Mohammadiha - Mohammad Hassan Sadreddini - Morteza Mohammadi Zanjireh
Performance Evaluation of Supervised Machine Learning Algorithms for Customer Classification in E-Commerce
Somayeh Ebrahimi Emamchai
Modeling Attention Performance Across Female Reproductive Aging Using Logistic Regression
Zahra Zehtabi - Leila Mehdizadeh Fanid - Pedram Salehpoor - Mahdi Jafari Asl
مدلسازی پیشبینی سکته مغزی با الگوریتمهای تقویتی و شبکههای عصبی در دادههای نامتعادل
ملیحه نیک سیرت - سیده فاطمه جوادی
تأثیر رایانش کوانتومی بر رمزنگاری کلاسیک و ضرورت توسعه رمزنگاری پساکوانتومی
علیرضا فولاد - سجاد بزرا - شایان مسگر
تأثیر استقلال و شایستگی حسابرس بر اثربخشی کنترلهای داخلی: بررسی نقش تعدیلی تجربه حسابرس
حیدر محمدزاده سالطه - سیما فرزانه خلیفه لو - زهره نوروزی مرادلو
تاثیر هوش مصنوعی بر تجارت الکترونیک: تحول توسعه، تجربه مشتری و عملیات تجاری
سجاد یوسفی - مریم پور نجف - مازیار دوستی تنها
Ensemble Learning–Based Surrogate Models for Non-Invasive Estimation of Corneal Mechanical Properties
Seyed Sadjad Abedi Shahri - Mitra Baradari - Iman Zoljanahi Oskui
more
Samin Hamayesh - Version 42.4.6