0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Mitigating MRI Domain Shift in Sex Classification: A Deep Learning Approach with ComBat Harmonization
نویسندگان :
Peyman Sharifian
1
Mohammad Saber Azimi
2
Masoud Noroozi
3
Alireza Karimian
4
Hossein Arabi
5
1- دانشگاه اصفهان
2- دانشگاه شهید بهشتی
3- دانشگاه اصفهان
4- دانشگاه اصفهان
5- دانشگاه ژنو
کلمات کلیدی :
Deep Learning،Sex Classification،Combat Harmonization،Domain Adaptation،Magnetic Resonance Imaging
چکیده :
Deep learning models for medical image analysis often suffer from performance degradation when applied to data from different scanners or protocols, a phenomenon known as domain shift. This study investigates this challenge in the context of sex classification from 3D T1-weighted brain magnetic resonance imaging (MRI) scans using the IXI and OASIS3 datasets. While models achieved high within-domain accuracy (around 0.95) when trained and tested on a single dataset (IXI or OASIS3), we demonstrate a significant performance drop to chance level (about 0.50) when models trained on one dataset are tested on the other, highlighting the presence of a strong domain shift. To address this, we employed the ComBat harmonization technique to align the feature distributions of the two datasets. We evaluated three state-of-the-art 3D deep learning architectures (3D ResNet18, 3D DenseNet, and 3D EfficientNet) across multiple training strategies. Our results show that ComBat harmonization effectively reduces the domain shift, leading to a substantial improvement in cross-domain classification performance. For instance, the cross-domain balanced accuracy of our best model (ResNet18 3D with Attention) improved from approximately 0.50 (chance level) to 0.61 after harmonization. t-SNE visualization of extracted features provides clear qualitative evidence of the reduced domain discrepancy post-harmonization. Cross-domain balanced accuracy improved from ~0.50 to 0.61 after ComBat, a modest yet meaningful gain that moves the model from chance-level failure toward more reliable generalization while remaining below clinical utility. This work underscores the critical importance of domain adaptation techniques for building robust and generalizable neuroimaging AI models.
لیست مقالات
لیست مقالات بایگانی شده
مروری بر روش های هوش مصنوعی توضیح پذیر
الهه محمدی - آزاده سلطانی
آینده پژوهی در سیستم های دستیار راننده: فناوریهای نوظهور
مهدی سیفی پور - رادمان نویدپور - محدثه پرویزی - سیامک محمدی
تحلیل اثر انشعاب فیبر بر خواص مکانیکی تاندون در محل اتصال به استخوان
فاطمه شهماری میکائیل درسی - هادی تقی زاده
بررسی رابطه عملکرد اجتماعی، زیست محیطی با عملکرد مالی شرکت های بورس اوراق بهادار تهران
بنفشه فهیمی نیری - حسین بوداقی خواجه نوبر
تحلیل بیومکانیکی موقعیت بهینه زاویه چرخش استابولوم پس از جراحی پریاستابولار استئوتومی گنز با مدلسازی سهبعدی و تحلیل المان محدود
سامرند نانوازاده - سروش مداح - سید محمود مدرسی
تاثیر هوش مصنوعی بر تغییرات سیاست های مالی: چالش ها و فرصت ها
بهارک یادگار جمشیدی - جمال سبک دستی - زینب رضائی - امین مقتدری
توسعه هیدروژل های زیست تقلیدی مبتنی بر یوتکتوژل برای کاربرد های پزشکی
فاطمه دهقان بنادکی - مهشید خرازیها
مروری بر روشهای هوشمند تشخیص نفوذ در اینترنت اشیاء با تأکید بر یادگیری ماشین و الگوریتمهای بهینهسازی
رضا کهن - حمید براتی - علی براتی
مشارکت دادن حسابداران مدیریت در پایداری شرکت
رعنا شهد آور - بیتا یوسف پور نوینی
بررسی ارتباط بین توانایی مدیریت و محدودیت مالی با تاکید بر نقش دانش مالی هیئت مدیره در شرکتهای دانش بنیان پذیرفته شده در بورس اوراق بهادار تهران
آروین نیک نام - قادر بابائی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2