0% Complete
English
صفحه اصلی
/
دومین کنفرانس ملی عصر انفجار تکنولوژی؛ هوش مصنوعی، تحولی در صنعت، تجارت و زنجیره تامین و دومین کنفرانس ملی علم داده در کاربردهای مهندسی
Detecting MDD based on EEG signals: Frontal or Temporal Region
نویسندگان :
Ali Zeraatkar
1
Amirreza Ahmadi
2
Saeed Yarmohammdi
3
Reza Rostami
4
1- University of Victoria
2- دانشگاه آزاد واحد علوم تحقیقات
3- دانشگاه آزاد واحد تهران مرکزی
4- دانشگاه تهران
کلمات کلیدی :
EEG،Major Depressive Disorder،Signal Processing،Machine Learning،Frontal and Temporal Region of the brain
چکیده :
Psychological problems like depression affect a person's growth, including thoughts, feelings, and behaviors. There is no laboratory test for detecting depression, which is the main reason for the wrong diagnosis of depression. Analysis of MDD's underlying neurophysiological functions can improve the detection and treatment of this mental disorder. Increasingly, EEG is used to diagnose and study brain disorders and functions; in this study we introduced a subjective-based method to detect depression with the significance of decreasing the electrode montage required for recording the EEG signals. Features are extracted from the frontal and temporal regions of the brain using eight electrodes. The linear features used are delta, theta, alpha, and beta relative band powers and alpha absolute power. The nonlinear features used are Sample Entropy (sampEn) and Higuchi's fractal dimension (HFD). The classifiers used in this study are Support Vector Machine (SVM), Logistic Regression (LR), and naïve Bayes (NB). The highest classification accuracy of 91.67% with an F1 score of 94.12% and Roc-Auc score of 98.44% were achieved for detecting depression using NB among the brain's frontal region. On the other hand, the highest classification accuracy among the right hemisphere of the temporal region was 83.34% with a Roc-auc score of 90% and F1 score of 87.5%. The analysis found that depression affects the frontal region of the brain and the left hemisphere of the temporal region more significantly with respect to the right hemisphere of the temporal region.
لیست مقالات
لیست مقالات بایگانی شده
تاثیر هوش مصنوعی بر عملکرد شرکت با میانجیگری چابکی مشتری و ظرفیت جذب و تعدیلگری چابکی سازمان شرکت عامر اندیش هوشمند
مریم مقرب صمدی
Investigating the effect of alpha/theta neurofeedback on Emotional Intelligence
Saeed Yarmohammadi - Amirreza Ahmadi
مدل های نوین بودجه ریزی عملیاتی و نقش آنها در بهبود عملکرد مالی بانک ها
بهارک یادگار جمشیدی - مبینا مولایی
تحولات شهری و گردشگری هوشمند در شهرهای ایران
ریحانه بابائی - محمدعلی فیض پور
ارتباط بین اطمینان بیش از حد مدیرعامل و خطر اخلاقی
عیسی ابیضی
ارتباط بین عملکرد پایداری و کارایی سرمایهگذاری با نقش تعدیلگری ارزش شرکت
مهدی زینالی - محمد کیانی - سونیا کیوان بد
بررسی رابطه بین کیفیت حسابرسی، تأمین مالی بدهی و مدیریت سود در مراحل مختلف چرخه عمر شرکتها
محدرضا پژوهی
تاثیر قابلیت های فناوری اطلاعات بر کیفیت حسابرسی با نقش میانجی پذیرش هوش مصنوعی
حسین نیک آسا - حیدر محمدزاده سالطه
مروری سیستماتیک بر کاربرد هوش مصنوعی در تشخیص تهدیدات سایبری در زنجیره تأمین رایانش ابری
اسماعیل قاسمی - شاهین سمیع عادل
کاربرد هوش مصنوعی در بازاریابی دیجیتال: تحلیل انگیزههای کاربران برای تقویت برندسازی در رسانههای اجتماعی
پریسا جعفری - سیروس فخیمی آذر - سلیمان ایرانزاده - حسین بوداقی خواجه نوبر
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.1