0% Complete
English
صفحه اصلی
/
دومین کنفرانس ملی عصر انفجار تکنولوژی؛ هوش مصنوعی، تحولی در صنعت، تجارت و زنجیره تامین و دومین کنفرانس ملی علم داده در کاربردهای مهندسی
Detecting MDD based on EEG signals: Frontal or Temporal Region
نویسندگان :
Ali Zeraatkar
1
Amirreza Ahmadi
2
Saeed Yarmohammdi
3
Reza Rostami
4
1- University of Victoria
2- دانشگاه آزاد واحد علوم تحقیقات
3- دانشگاه آزاد واحد تهران مرکزی
4- دانشگاه تهران
کلمات کلیدی :
EEG،Major Depressive Disorder،Signal Processing،Machine Learning،Frontal and Temporal Region of the brain
چکیده :
Psychological problems like depression affect a person's growth, including thoughts, feelings, and behaviors. There is no laboratory test for detecting depression, which is the main reason for the wrong diagnosis of depression. Analysis of MDD's underlying neurophysiological functions can improve the detection and treatment of this mental disorder. Increasingly, EEG is used to diagnose and study brain disorders and functions; in this study we introduced a subjective-based method to detect depression with the significance of decreasing the electrode montage required for recording the EEG signals. Features are extracted from the frontal and temporal regions of the brain using eight electrodes. The linear features used are delta, theta, alpha, and beta relative band powers and alpha absolute power. The nonlinear features used are Sample Entropy (sampEn) and Higuchi's fractal dimension (HFD). The classifiers used in this study are Support Vector Machine (SVM), Logistic Regression (LR), and naïve Bayes (NB). The highest classification accuracy of 91.67% with an F1 score of 94.12% and Roc-Auc score of 98.44% were achieved for detecting depression using NB among the brain's frontal region. On the other hand, the highest classification accuracy among the right hemisphere of the temporal region was 83.34% with a Roc-auc score of 90% and F1 score of 87.5%. The analysis found that depression affects the frontal region of the brain and the left hemisphere of the temporal region more significantly with respect to the right hemisphere of the temporal region.
لیست مقالات
لیست مقالات بایگانی شده
چالش ها و راهکارهای استفاده از حسابداری منابع انسانی در عصر دیجیتال
پگاه نکواصل - حانیه سرافراز
کاربرد رویکرد بازیابی اطلاعات در تحلیل داده های بیماران دیابتی
زهرا محمدی فرد چینی بلاغ
تحلیل نقش عوامل اقتصادی و فرهنگی در پذیرش خرید الکترونیکی بازنشستگان: رویکردی مبتنی بر مدل UTAUT
احسان مظفری - سحر احمدیان
شناسایی نقش تحولآفرین هوش مصنوعی بر خودکارسازی فرآیندهای حسابداری و سادهسازی گزارشهای مالی
صدیقه بخشی زاده باغستانی
A Comparative Analysis of CNN Architectures for Histopathology Image Classification: Performance, Efficiency, and Adversarial Robustness
Moein Akbari Shahpar - Mohsen Akbari-Shahpar
بررسی حسابرسی تقلب در شرکتها و گزارش اخلاقی تقلب
محمدحسین مظلومان - محمدامین زکی زاده
محاسبات کوانتومی در عمل: از تئوری تا پیادهسازی تجاری
محمد عادلی نیا
ارائه یک مدل ARIMAX بهبود یافته برای پیش بینی قیمت سهام
عارفه عمیدیان - امیرمسعود عمیدیان - مینا مسعودی فر
تحلیل نقش هوش مصنوعی در تحول بازرگانی و مدیریت زنجیره تأمین: مطالعهی موردی گروه صنعتی مپنا
حسین بوذری
بررسی تأثیر مسئولیت اجتماعی شرکت بر مفاهیم حسابداری مالی (بازده سهام، مدیریت سود واقعی، عدم تقارن اطلاعات و عملکرد مالی) در شرکت پذیرفته شده در بورس اوراق بهادار
فاطمه ایمانی - محمود همت فر
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1