0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Design and fabrication of a cost-effective dry electrode for electroencephalography (EEG) signal acquisition
نویسندگان :
Sobhan Sheykhivand
1
Nastaran Khaleghi
2
Lida Zareh Lahijan
3
1- Department of Biomedical Engineering Faculty of Interdisciplinary sciences and technologies Bonab, Iran
2- Department of Biomedical Engineering Faculty of Electrical and Computer Tabriz, Iran
3- Department of Biomedical Engineering Faculty of Electrical and Computer Tabriz, Iran
کلمات کلیدی :
Bio-signal،Electroencephalography (EEG)،Dry Electrode،Contact Impedance،Sintering Method
چکیده :
An electrode is a conductive material that, on one side, is connected to a metallic component (such as a copper wire) and, on the other side, to a non-metallic component (such as a semiconductor, electrolyte, or vacuum) within an electrical circuit, establishing a connection between them. Biological electrodes provide a link between the human body and an electrical circuit, ultimately enabling the circuit to transmit useful data to a computer for analysis in various applications. Various types of electrodes are used for recording bio-potentials, which, based on the type of contact, can be classified into two categories: (1) wet electrodes and (2) dry electrodes. Wet electrodes require the application of conductive materials, such as conductive gel, before attachment to ensure optimal contact. However, these materials can cause inconveniences for both the patient and the operator, such as the need to prepare the skin (e.g., shaving) or to clean the site after signal acquisition. Consequently, dry electrodes have become increasingly popular due to their ease of use for both patients and operators. Nonetheless, one challenge of this type of electrode is the high electrical contact impedance caused by the absence of conductive substances. In this study, a low-cost dry electrode based on a silver-powder sintering process on a copper substrate was designed to enhance EEG signal quality and signal-to-noise ratio (SNR) without requiring conductive gels.
لیست مقالات
لیست مقالات بایگانی شده
Neural Encoding of Outcome Magnitude: Evidence from fMRI
Amin Mohammad Mohammadi - Shaghayegh Mahmoudi - Narjes Amin - Farid Hosseinzadeh - Elias Ebrahimzadeh - Hamid Soltanian-Zadeh
Physics-Informed Neural Networks for Cardiac Flow Estimation in 2D Simplified Human Right Ventricular Geometry
Mohammadmahdi Sekhavatpisheh - Nasser Fatouraee
Impact of Impeller Blade Number on the Hemodynamic Performance of Specially Designed Mini VAD
Nasser Alizadeh - Hanieh Niroomand-Oscuii - Farzan Ghalichi
تاثیر هوش مصنوعی در مدیریت بحران زنجیره تامین
علیرضا فولاد - شایان مسگر - احمدرضا مسئله - حسین پورابراهیم گیل کلایه
شناسایی رابطه غیرخطی بین قدرت سیگنال و مصرف باتری در کنتورهای هوشمند آب با استفاده از XGBoost
محمد رستمی - فضل الله ادیب نیا
Prediction of cardiac arrhythmia via an improved hierarchical fused fuzzy deep learning
Arman Daliri - Nora Mahdavi
کاربرد هوش مصنوعی در بازاریابی دیجیتال: تحلیل انگیزههای کاربران برای تقویت برندسازی در رسانههای اجتماعی
پریسا جعفری - سیروس فخیمی آذر - سلیمان ایرانزاده - حسین بوداقی خواجه نوبر
مدیریت و فرصت های سرمایه گذاری
محمدرضا پژوهی
بررسی تاثیر کیفیت خدمات، ارزش درک شده و تصویر شرکت بر رویکرد نگرشی مشتریان در بانکداری
امیر محمدپور - یاسین فخیم عبدالهی - محمد همت زاده
EEG-Based Classification of Schizophrenia and Healthy Controls Subjects Using Statistical and Nonlinear Features with Emphasis on Fuzzy Entropy
Mahdiyeh Tofighi Milani - Sina Shamekhi - Asghar Zarei
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1