0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
A Combined Time-Frequency and Common Spatial-Spectral Pattern Approach for EEG-Based Motor Imagery Classification
نویسندگان :
Reza Nejati
1
Hamed Danandeh Hesar
2
1- Sahand University of Technology
2- Sahand University of Technology
کلمات کلیدی :
Motor Imagery Tasks،Tunable-Q Wavelet Transform،Common Spatial-Spectral Patterns
چکیده :
Brain-Computer Interfaces (BCIs) are revolutionizing neurorehabilitation, providing crucial communication and control for individuals with severe motor impairments from conditions like ALS, spinal cord injuries, or stroke. By creating direct links between brain activity and external devices, BCIs bypass damaged neural pathways, thus restoring motor function and significantly enhancing quality of life. Electroencephalography (EEG) is a favored BCI modality due to its accessibility and cost-effectiveness. However, a major challenge lies in the substantial impact of cognitive and individual differences on motor imagery (MI) task performance and overall BCI accuracy. This research introduces a novel method to overcome these challenges, focusing on enhanced MI classification. Our approach synergistically integrates Common Spatial-Spectral Pattern (CSSP) filters with the Tunable-Q Wavelet Transform (TQWT). This powerful combination was applied to the extensive CHO-2017 database (52 participants), which uniquely captures significant inter-individual cognitive variations, specifically to distinguish between left and right-hand MI tasks. A critical aspect of our method is the utilization of only the top 10 most discriminative features extracted through this hybrid technique. This deliberate streamlining maximizes classification efficacy while maintaining computational efficiency. This tailored feature set demonstrated remarkable effectiveness, performing across 99% of participants. When integrated with a K-Nearest Neighbors (KNN) classifier, this approach achieved an outstanding accuracy of 98.84%, notably surpassing existing state-of-the-art methods in the field. These findings hold significant promise for developing more accurate and robust BCI systems capable of extracting optimal commands for diverse MI applications, ultimately advancing neurorehabilitation outcomes.
لیست مقالات
لیست مقالات بایگانی شده
مروری بر ارتباط بهره وری نیروی انسانی و سرمایه و سیاست تقسیم سود شرکتها
لیلی روح بخش
نقش علم داده در مهندسی راه و ترابری
حمیدرضا ربانینژاد
Synthesis and Swelling Behavior of pH-Sensitive Chitosan/Polyvinylpyrrolidone Hydrogels for Drug Delivery Applications
Shaghayegh Zameni Nir - Hanieh Shokrkar - Niloofar Nasirpour
Biomedical Applications of Pectin Nanomaterials: Progress and Perspectives
Maryam Rajabzadeh-khosroshahi - Ali Baradar Khoshfetrat - Mehdi Salami-Kalajahi
Innovative Biomimetic Skin Repair Strategies Utilizing Barium Titanate
Hossein Norouzi Bazmin Abadi - Zahra Mohammadi
استراتژی رفتارگرایانه مدیریتی: چگونگی کنار آمدن با زمینه های آشفته و نامطمئن
رعنا شهدآور - صبا کبیرخو - سیما غفاری
Robust Glucose Level Classification from NIR-Based PPG Using Morphological Features
Arian Mesforoosh Mashhad - Yeganeh Binafar - Mohammad Reza Akbarzadeh Totonchi
Comparative Evaluation of Two Keratin Extraction Methods from Kurdish Sheep Wool and Their Application in the Fabrication of Biocompatible Hydrogels with Gelation Time Analysis
Sajjad Pourabdal Nergi - Fatemeh Bagheri - Abbas Sheikh
The Adaptive Approach of Ensemble Deep Learning Model in OCT Image Classification
Hamed Aghapanah Roudsari - Ali Ghaderian - Mrteza Choubin
Diagnostic and Classification Analysis of Retinal Diseases Using OCT Imaging: Focus on Diabetic Retinopathy and Overlap with Other Retinal Disorders
Fatemeh Reyhani - Yashar Amizadeh - Ata Jodeiri
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1